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The problem of controlling the oscillations of a mathematical pendulum is considered. The overall control resource is subject 
to an integral constraint: the modulus of the control function to an arbitrary non-negative power (greater than or equal to unity) 
is a summable function over a specified time interval. The purpose of the control is to minimize a specified function of the phase 
variables to a fixed instant of time (Mayer's problem). Together with the deterministic case, a stochastic case is studied when 
the system is subject to random perturbations in the form of Gaussian white noise. In this case, it is required to minimize the 
mathematical expectation of specified functionals or to maximize the probability that a phase coordinate falls within a specified 
domain by a fixed instant of time. It is well known [1, 2] that the problem of constructing an optimal feedback control can be 
reduced to solving a Cauchy problem in an unbounded domain for the corresponding Hamilton-Jacobi-Bellman equation. It is 
proved that this problem is equivalent to a Cauchy problem for a linear parabolic equation. Exact solutions of this problem are 
found for the class of optimal control problems being considered. The case of a pulse correction, when the value of the integral 
of the modulus of the control function is bounded, is considered separately. The results obtained are extended to the case of an 
arbitrary number of phase variables if the control functions are square integrable. © 2004 Elsevier Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose the controlled motion of a mass is described by the equations 

ic] = x 2, ~2 = - o C x t  + u ( t )  + 6 ( t ) ~ ( t )  
o o xl(0)  = Xl, x2(0) = x 2 

(1.1) 

Here t is the time, 0 < t < T, Xl andx2 are phase coordinates, u( t )  is the control force (the control function), 
~(t) is Gaussian white noise of unit intensity, ~(t) is a bounded function which represents the intensity 
of a perturbation and co is the natural frequency. 

If (~(t) = 0, we shall call problem (1.1) a deterministic optimal control problem. 
The following integral constraint is imposed on the magnitude of the control (the control function) 

u(t) 
T 

p,l-dt_< e0 , 
0 

Qo = eonst (1.2) 

Here  m is a real positive number  m > 1, m = 2k/(2s - 1), k > s, k, s = 1, 2 . . . . .  
The  case when rn = 1 will be considered separately. The  number  m is the pa ramete r  of  the problem:  

the different methods  of  specifying constraint  (1.2) on the overall control  resource cor respond  to 
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different value ofm.  Note that the case when m = 2 is called control by a small traction, while the case 
when rn = 1 is called pulse control. 

We introduce the variable 

T 

q(t) = ~lu(t)lmdt 
t 

The variable q(t) has the meaning of the unconsumed control resource and q(0) = Q02, q(T) = 0. Then, 
the equation 

q = -lu(t)] m (1.3) 

can be added to Eqs (1.1). 
The purpose of the control is to minimize one of the following functionals 

E { ¢ t X l ( T ) ) } ,  E{~(x2 (T) ) }  (1.4) 

Here E is the sign of mathematical expectation and q0(x) is a smooth, even, non-negative function of 
its arguments, and q0'(x) > 0, x > 0, q0(0) = 0. In the case of the deterministic problem (o = 0), the 
sign of the mathematical expectation in functionals (1.4) must be discarded. 

A typical example of functionals (1.4) is the potential and kinetic energy at the instant of time t = T, 
that is 

1 2 2  1 2  
~(x l )  = Eta xl,  ~(x2) = ~x2 

The problem of controlling system (1.1), (1.3) with the aim of maximizing the probability that the 
phase trajectory of the system will fall within a specified set N on the line Xl or x2 at the instant t = T 
is a special case of the stochastic version of problem (1.4). 

Next, we will assume that N is a connected set on the phase line xl and x2 which is symmetrical about 
the origin of the coordinates. 

The domains 

xt: IXl[_<Si, x2: 1x21_<82, ~1,82 = const>O 

serve as characteristics examples of the domains N. 
By taking account of the specific features of functionals (1.4), the order of system (1.1), (1.3) can be 

reduced. In order to do this, we introduce the new variable 

y(t)  = x2sin(to(T- t)) +tox I cos(to(T- t)) 

It can be verified directly that 

y(T)  = COxl(T), ~ = sin(to(T-t))(.~ 2 + to2xl) 

Consequently, in the case of functionals which depend solely on the final state of the phase variable 
xl, system (1.1), (1.3) takes the form 

= s in ( to (T - t ) ) (u ( t )  + a(t)~(t)),  t~ = - l u l  m (1.5) 

If the variable 

y( t )  = x2COS(O(T-  t))  - tOx I s i n ( o ( T -  t ) )  

is now introduced, then 

y ( T )  = x2(T ) 

and, hence, in the case of functionals which depend solely on the final state of the phase variable x2, 
the first equation of system (1.5) takes the form 
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p = cos(co(T- t))(u(t) + o(t)~(t)) 

If co = 0, then we considery(t) = x2(T-  t) + xl as the new variable. Then, the first equation of system 
(1.5) takes the form 

= ( T -  t)(u(t) + o(t)~(t))  

Generalizing the cases considered, we next consider the following equation of motion 

: = f ( t ) (u( t )  +O(t)~(t)), q = - l u l  m (1.6) 

where f(t) is a smooth continuous function and 0 _< t < T. 
Note that the problem has been solved numerically for the cases when m = 1,2 for c, = 0 using self- 

similar variables in [2, 3]. Local solutions of the corresponding Hamilton-Jacobi-Bellman equation have 
been investigated in [4]. 

2. THE H A M I L T O N - J A C O B I - B E L L M A N  E Q U A T I O N  (m > 1) 

We will first consider the stochastic version of the initial problem. Suppose S(y, q, t) is the minimum 
mathematical expectation of one of the functionals (1.4), which can be attained with the initial conditions 
t = to, q = q0, Y = Y0 in the optimal control problem described by the equations of state (1.6). Assuming 
that the function S(y, q, t) exists and that it is sufficiently smooth, the Hamilton-Jacobi-Bellman (HJB) 
equation can be written as 

• m I 2 
S, + m m { f ( t ) u S y -  lul sq} ÷ fro ( t ) S .  = 0 

u - - 
(2.1) 

Here, the minimum is taken with respect to u. The function S satisfies the condition S(y, q, T) = cp(y). 
It follows from the formulation of the problem that the value of the function S(y, q, 7) can only 

decrease when the value of q is increased, since the greater the control resource the smaller the value 
which the functional can attain when the remaining conditions are the same, that is 

S(y, q2, t) = S(y, ql, t), ql <q2 

Taking into account the smoothness of the function S(y, q, 7), we obtain that the condition 

Sq(y,q, T ) < 0  (2.2) 

must be satisfied• 
In the domain where Sq(y, q, 7) < 0, a motion can be obtained using a control force and, in this case, 

a certain control resource q' is consumed. The minimum value of the expression in the braces in Eq. (2.1) 
is attained for the following control function 

u = ( ~ ) ~ t s i g n ( S y f ( t ) ) ,  ~t = ( m - l )  -t (2.3) 

After replacing the variable 

x = f f2(s)ds  (2.4) 

Eq. (2.1) becomes 

1 2 + )gm(~)([S~) ~+lsq 
S , ¢  - ~  ~(~l('C)Syy ( m -  1 \-m,~q,/ (2.5) 

with the initial condition 

S(y,q, O) = ~(y) (2.6) 



734 A.S.  Bratus' and K. A. Volosov 

Here 

gm('t) = If(t)l ~t-1, ol(x) = 6(t)lf(t)l,= ,(x) (2.7) 

and the variables t and "c are related by (2.4). If Sq(y, q, "c) = 0 for a certain set, then the minimum of 
the expression in the braces in Eq. (2.1) is attained when and only when either u = 0 or Sq = Sy = 0 
simultaneously for this set. In the first case, uncontrolled motion under the action of random forces 
occurs. In these domains, Eq. (2.1) has the form 

1 2 . t . _  St + ~(~ [ )~yy = 0 (2 .8)  

In the second case, the control u = 0 and the linear-fractional function in Eq. (2.1), which contains the 
quantities Sy and Sq to the corresponding powers, must be determined in a set where Sy = Sq = 0. Since, 
according to our assumption, ¢p(y) is an even function, problem (2.5), (2.6) is invariant under the 
replacement of the variable y by -y. Consequently, this problem can only be considered when y > 0 
with the additional boundary condition 

Sy(O, q ,  x) = 0 (2.9) 

All the arguments which have been presented also retain their meaning in the case of the problem 
of maximizing the likelihood that N falls within a specified set on the line xl or x2 at the instant of time 
t = T. Calculation of the minimum in Eq. (2.1) has to be replaced by calculation of the maximum. Note 
that a maximum of the above-mentioned expression will exist when and only when Sq(y, q, x) > O. 

The form of formula (2.3) is preserved in the deterministic case. 
Equation (2.5) will take the form 

Sx = (rn-1)Pm('[) (___.~q)lSy] ta+ lSq (2.10) 

Here, 

= T- t, pm(Z) = If(T- x)l ~'- 1 (2 .11)  

3. EXACT S O L U T I O N S  OF THE H A M I L T O N - J A C O B I - B E L L M A N  
E Q U A T I O N  (m > 1) 

Consider the case of the deterministic system c~(t) = 0. 

Assertion 1. The exact solution of Eq. (2.1) is given by the equality 

S(y, q, z) = {p(z) 

where 

z = y -  Pro(q, x), Pm(q, "C) = llm . . . . .  1 - lira 
q (~,Y-)m('~)) , Om(T, ) = fPm(S)ds  

o 

The functionpm(s) is defined by equality (2.11). The optimal feedback control in the deterministic 
optimal control problem, which is defined by the equations of state (1.6) with one of the functionals 
(1.4), is determined using the formula 

[-If ( t )l~t( O- -~  ) ~'~sign f ( t), 

u = ]0,  O<Y<Pm(q,x) 

Y > Pro(q, "C) 
(3.1) 

Proof. The first part of the assertion can be verified directly by substituting the function q0(z) into 
Eq. (2.10). 
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We consider the domains 

m 
D l = { y , q , ' r : y > P m ( q , z ) } ,  D'~ = { y , q , x : O < Y < P m ( q , X ) }  (3.2) 

The boundary Ym of these domains is specified by the surface y = Pm(q,  x), which contains the 
coordinate axis q = 0, and its sections when q = const > 0 are a monotonically increasing curve emerging 
from the origin of coordinates in the (y, x) plane. The surface divides the domains D r  and D~' in such 
a way that the surface x = 0 is the boundary of the domain Dr ,  and the surface y = 0 is the boundary 
of the domain Dr .  

Equation (2.1) and condition (2.6) satisfy the boundary condition 

Sq(y,  q, '~) < O, u ¢ O 

Consequently, the first part of formula (3.1) only holds in the domain D~ n. The function S = q~(z), together 
with its derivatives with respect to y and q, vanish on the boundary Ym of the domains D~' and D~ n. 

We extend the function S = q0(z) with a zero into the domain D~'. The choice of the control u = 0 
in the domain D r  ensures that the phase trajectory of the system falls within the sety = 0 when x = 0. 

In fact, it follows from Eqs (1.6) when u = 0 thaty = const > 0, q = const > 0 and, hence, when the 
inverse time, "c = T -  t, is decreased, the phase trajectory of the system necessarily falls on the boundary 
Ym (see Fig. 1). 

The trajectories of the deterministic problem (1.6) in the domain D~' lie on the surface 

G(y ,  q , x )  = y - P m ( q , x )  = const 

In order to prove this, it is necessary to consider the normal to this surface and to check that it is 
orthogonal to the vector composed of the right-hand sides of Eqs (1.6). Taking formula (3.1) into account, 
we write the deterministic system (1.6) in the form 

S' = - F ,  gl = -F 'n ,  "~ = - 1 ,  F = ( f ( 'O)~ t (q lOm(Z) )  l/m 

Using the explicit form of the expression for the function Om(X), it can be verified that the scalar product 
of the vectors V G  and (-F, -F% -1) is equal to zero. 

Formula (3.1) also retains its meaning on the surface Ym itself, despite the fact that Sq = S r = 0 on 
Ym, since the indeterminacy in expression (3.1) which arises here can be expanded. Hence, the possibility 
mentioned earlier in Section 2 for which Sy = S = 0 and the control u ~ 0 is realized on the set Ym" 

To sum up, in the domain D~' together wii~a the boundary Ym, motion occurs over the surface 
Y - Pro(q, x) = const and, in the domain Dr ,  the phase trajectory has the form y -- q = const which 
ensures that it falls within the sety = 0 by the instant x = 0 (see Fig. 1). 

We will now consider the stochastic case of problems (1.6). 

/ 
D2 

0 X 

Fig. 1 
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Assertion 2. The Hamilton-Jacobi-Bellman equation (2.5) reduces to the linear parabolic equation 

1 2.,~.di > 

in the function q~ of the two variables w and x, where 

w = Y-Rm(q,'c), Rra(q,x) = ql/m(~s('t))(s-l)/ra, 

(3.3) 

'C 

Vm('lO ---- fgra(8)d$ ( 3 . 4 )  

0 

(the function gin(s) is given by equality (2.7) for x and t which satisfy equality (2.4)). The optimal feedback 
control in the stochastic problems (2.5), (2.6) is determined using the formula 

I ll(ra 1) q lira 
-If(t)l - [" "~ signf(t), y_> x) u = k ~ - - ~ )  Rra(q, (3.5) 

[0, O<y<R,n(q, 'O 

Proof. The first part of the assertion can be verified by direct substitution. The solution of the Cauchy 
problem (2.5), (2.6) has the form 

S = d#(w, x) = ~A(w, 'c, rl)q)(rl)drl (3.6) 
0 

where 

1 2 - ~  J+  2B(x) )d = ° 4  
¢ o  

0 

(3.7) 

We consider the domains f~n and f2~, which differ from the corresponding domains (3.2) in that the 
function Pro(q, x) is replaced by Rm(q, "c). 

As in the deterministic case, it is proved that the surface Fm = {y, q, x: y -Rm(q, x) = 0} divides the 
domains f ~  and f~ .  The synthesis of the optimal control in the domain f ~ ,  which includes the boundary 
Fro, is determined using the upper part of formula (3.5). We put u = 0 in the domain f2~ n. A point mass 
then executes uncontrolled motion, which represents a random walk in the set 

O< y < Rm(q, X) 

Since Rm(q, "c) ~ 0 when x ---) 0, the phase coordinate of the point, with a probability of unity at a certain 
instant of time x > 0, falls onto the boundary Fm where correction occurs. In this case, the value of the 
Bellman function S(y, q, x) in the domain f2~ is determined from the solution of the following boundary- 
value problem 

1 2 S , =  ~ffl(X)Syy, y > 0 ,  q>0,  "c>0 

y = Rra(q,x):S = ~(0, x); y -  0, Syly=o = 0  
(3.8) 

where q~(w, x) is the solution (3.6) of Eq. (3.3). 
The result of Assertion 2 is also preserved in the case of the problem of maximizing the incidence 

of N on a phase line in a specified domain. We supplement Eq. (2.5) with the initial conditions 

1, y~  N 
S(y,q,O) = O, y~  N 
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The solution of  the  resulting Cauchy problem has the form 

S = ~ A ( w ,  ~, rl)Cp(Tl)drl 

N 

Here  w is a variable which is defined by the first equality of  (3.4) a n d A ( w ,  x, 13) is the function given 
be expression (3.7). Integrat ion is carried out  over the symmetric set Nm, where  y > R,n(q,  x). All the 
remaining arguments  are a repeti t ion of  the arguments  used in the p roo f  o f  Asser t ion 2. Note  that  a 
local solution of  Eq. (2.5) in the domain  [2~ n, rn = 2 was previously found in [4]. 

Examples.  1. We will consider the stochastic problem with f ( t )  = T - t. It follows from expression (2.4) that 
z = ( T -  t)3/3. The solution of Eq. (2.5) in accordance with Assertion 2 is a function of the variables 

w = y - R m ( q ,  "¢) 

Rm(q, W) = ( (m - 1)/(2m - 1)) 1 - I I m ( 3 w ) 2 / 3 -  l/(3m)ql/m 

The optimal feedback control in this case is determined using the formula 

u = l - ( q ( 3 W ) - l / 3 ) ( 2 m -  l ) / ( m -  1)) l/m, y>- Rm(q, W) 

[0, O < y < R m ( q , W  ) 

2. We will consider another common case. We put m = 2 a n d f  = sin0~(T- t); it then follows from equality (2.4) 
that the variables t and x are connected by the relation 

w = ~ ( T -  t - (sin2co(T- t))/(2co)) (3.9) 

In this case, the optimal control is given by 

u = - ~ - s in(cO(T- t ) ) (q l ' c ) l /2 '  y > 4rq-z 

" 10,  0 < y < , , / ~  

3. We will now present an example of a deterministic situation. For the functionf = T -  t = w, from relation (2.11) 
in accordance with Assertion 1 we obtain 

Pm(W) = W It+l ,  ~m(W ) = ( 2 + b t ) - l w  2+It 

Formula (3.1) (the optimal feedback control) takes the specific form 

f 
u = l -x-l/m(2+~t)' y > ql/m(Orn(X))l-IIm 

[ 0, 0 < y < ql/m(Om(X))l  - l/m 

4. We put m = 2. Then, for the functionf = sino~(T- t) = sino~, the corresponding control has the form (3.1), 
where 

Om(X) -- (x + sin(2tox)/(2co))/2 

pm('~) = ((W+ sin(20~x)/(2co))/(2q)) 1/2 

A graph of the change in the optimal control u and the optimal phase trajectory of a deterministic system (see 
the example) in the case when m = 2, T = 10 a n d f  = T -  t are shown in Fig. 2. The initial data for system (1.6) 
in this example have the form 

0 
xl = 4 ,  x = 2 ,  q 0 =  1 

The "plus" sign is taken in relation (1.3). 
The same characteristics are shown in Fig. 3 for m = 2, T = 10,f  = cos(n(T-t) /3)  for system (1.6) with the 

initial data x ° = 2, x ° = 8, q0 = 1. 
The calculations show that the optimal phase trajectories of a system with a non-zero value of co have the form 

of unwinding spirals. Hence, there is an increase in the kinetic energy in the problem of minimizing the potential 
energy of a system to a specified instant of time, while there is an increase in the potential energy (Fig. 3) in the 
analogous problem of minimizing the kinetic energy to the final instant of time. 
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Fig. 3 

4. T H E  L I M I T I N G  CASE - P U L S E  C O R R E C T I O N  

It is clear from the form of the Hamilton-Jacobi-Bellman equation (2.5) that the case when rn = 1 is 
special. It has been shown in [1] that the form of Eq. (2.5) on taking the limit as m ~ 1 depends on 
the value of the following expression 

H(y, q, "c) = f( t)Sy + Sq 

and H(y, q, x) < 0 for all permissible values of y, q and ~. 
In the domain ~ ,  where the inequality H(y,  q, x) < 0 is satisfied, there is uncontrolled motion under 

the action of random forces. The function S in this situation is the solution of the Cauchy problem for 
the limiting parabolic equation 

1 2 
S,~- ~(~l('C)Syy --- 0 

The equality H(y, q, x) = 0 is satisfied in the domain f2~. In this domain, the function S(y, q, x) is 
the solution of the first-order hyperbolic equation 

f (z)Sy + Sq = 0 (4.1) 
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The characteristics of this equation are specified by the equality y - f( 'c)q = const. The latter means 
that there is a pulse correction in the domain ~ under the action of which a point is instantaneously 
displaced along the characteristics of hyperbolic equation (4.1). At the same time, as a result of the 
correction, the point either finds itself on the boundary F 1 of the domains f~l and f~l or the control 
resource is completely exhausted. The determination of the boundary completely solves the problem 
of constructing the optimal feedback control. 

The problem was studied earlier in [1-3] for the case when o) = 0 and, in [4-5], solutions were found 
numerically using self-similar variables. An analogous problem was investigated in [6, 7] using variational 
inequalities. A game approach to the problem for the deterministic case was considered in [8]. 

Using the results of Section 3, we will now study the limiting position of the boundary when m ~ 1. 
Consider the continuous function 

F(x)  = maxlf(s)l ,  0 < s < x (4.2) 

Here,  the variables t and "c are related by (2.4). 

Assertion 3. Supposef(z) is a non-negative, monotonically increasing function of the variable "c, 0 ___ x < T. 
1 Then, when m = 1, the solution of Eq. (2.5) in the domain f~l is a function of the two variables: 

S = ~(w,  z), where w = y - qF('c). The function q~(w, z) is the solution of the linear parabolic equation 
(3.3): it is defined by formula (3.6), (3.7). In the domain f~,  there is a pulse correction under the action 
of which a phase point is displaced over the surfaces y - qF('c) = const. In the domain U21 = {y, q, 
x: 0 _<y < q F(z)}, uncontrolled motion under the action of random forces occurs. The boundary of the 
domains ~ and f ~  is determined by the equalityy = qF(z), and the Bellman function S(q,y ,  "c) in the 
domain f21 is the solution of the boundary-value problem (3.8), where Rq, ~ = qF(x). 

Proof. We will now make use of the result of Assertion 2 while letting m tend to unity. To do this, it is 
necessary to calculate the limit of the expression Rm(q, "0, which is defined by the second and third 
equalities of (3.4). Using relations (2.4) and (2.7), we obtain 

i"C "~(m - I ) lm  

F(x) = lim |[((f(s))Z/"-~)mu| 

It is well known [9] that the equality 

(b .~I/p 
l ~ J  fl~(s)lp/ = a~s~bmax I~(s)l (4.3) 

holds for any continuous function q0(s). 
Taking account of (4.2) and (4.3) we obtain F(x) = f(x). Taking the limit in the second and third 

formulae of (3.4) we conclude that the S(q, y, "c)-function in the domain ~ satisfies Eqs (3.8). 

Remark. If the condition that the functionf(x) is monotonic is dropped, thenf(z) _< F(x), and equality will only be 
achieved at points where the functionf(x) reaches a maximum. In this case, pulse correction does, in fact, happen 
at these instants of time. 

Examples. l. Suppose o~ = 0 andf = T -  t. It follows from expression (2.4) that the variables t and x are connected 
by the relation x = ( T -  t)3/3. Consequently, F(~) = (3x) 1/3. 
2. If co ~ 0 andf  = sin(o~(T- t)), it follows from expression (2.4) that the connection between the variables t and 
x is achieved using equality (3.9). In this case, 

= lsin(0~x), O<x<_n/(2o~) 
F(x) [1. x> n/(2o~) 

The domain f2~ consists of the sety > sin(oft) if 0 < • _< n/(2o~). If, however, x > rc/(2o~), then a pulse correction 
is put into effect at the discrete instants of time Xk = krc/(2c0) (k = 1, 2, ...). Motion occurs in a direction opposite 
to the direction of they axis. In this case, either the phase point falls in the sety = qsin(coz) or the control resource 
is completely used up. 

A graph of the change in the control resource and the optimal phase trajectory are shown in Fig. 4 for the case 
when m = 40/39 and T = 8 in a problem withf(t) = sin(n(T- t))/3, that is, a situation when the value ofm is close 

0 0 to unity. The initial data of system (1.6) are: xl = 8, x2 = 4, q0 = 0.8. The optimal control (Fig. 4) is a train of 
pulses. As in the preceding cases, the phase trajectory of the system has the form of an unwinding spiral. 
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5. T H E  C A S E  O F  A N  A R B I T R A R Y  N U M B E R  O F  D E G R E E S  O F  
F R E E D O M  (m = 2)  

The fact that the Hamilton-Jacobi-Bellman equation is integrable (Assertion 2) enables us to solve 
certain multidimensional problems. 

Consider a system with n degrees of freedom, described by the equations 

Xl -- X2, "~2 = -- KXI + U(t) + (~(t)~(t) 

k k ., xk,(t)), k 2, (5.1) Xk(t ) = (x l ( t ) ,  X2(t ) . . . .  1, 

U(t) = ( U l ( t ) , u 2 ( t )  . . . . .  Un(t)) 

Here Xl(t) and X2(t) are n-dimensional displacement and velocity vectors, U(t) is a control vector and 
its components are the control forces, K is a symmetric positive-definite matrix, ~(t) is the vector of 
independent Gaussian white noises of unit intensity and t~(t) is a function which specifies the intensity 
o f  the perturbation by the random forces. The constraint 

T 
2 2 

~,Suidt<-Qo, Q0 = const (5.2) 
0 

is imposed on the control forces. 
Here and everywhere henceforth, summation is carried out from i = 1 to i = n. 

The problem arises of finding the control for which either the mathematical expectation of the 
potential energy of the system 

Jl -- I ( K X t ,  XI)  
I .  

or the kinetic energy 
1 

J2 = 2(KX2,  X2) 

reach the minimum value in a fixed instant of time t = T. 
A non-degenerate orthogonal transformation exists [10] such that 

Z I = ATXI , Z 2 = ATx2 , A -1 = A r, A r K A  = A 

Here A is a diagonal matrix with diagonal elements ~. = 0)/2, where (.o i are the frequencies of free 
vibrations of the initial system. System (5.2) takes the form 
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ZI = Z2, Z2 = -AZ1  + V(t) + 6(t)Ar~(t)  

z d t )  (z~(t), k k ---- Z2(t ) . . . . .  zn(t)), k = 1,2 

V(t) = (1)l(t), 02(0 . . . . .  tin(t)) 

Here, V(t) = ArU(t) and V(t) is a new control. 
The control a2i also satisfies constraints (5.2). 
In fact, we have 

T T T T 

Zfl)2idt = I(V,  V)dt = I(AU, ATU)d, = f ( U , U ) d t < Q  2 
0 0 0 0 

The functionals J1 and J2 retain their own kind of quadratic forms 

1 1 
Jl = ~(ZI, ZI), J2 = ~(Z2, Z2) 

We introduce the variable 
T 

q(t) = ~(Zo2i)dt 
0 

Taking account of constraint (5.2), we obtain 

We now put 
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(5.3) 

in the case of the functional J1. In the case of the functional J2, we introduce the variable 

yi(t) = z~ costoi(T- t) + toiz] sintoi(T- t) 

If, however, to = 0 and 3] = T - t, we consider 

y,(t) = z2i(T- t) + z~ 

System (5.3) can be written in the form 

~'(t) = f ( t ) (V( t )  + a(t)A~(t)) 
Y(t) = (yl(t), y2(t) . . . . .  yn(t)) (5.5) 

The Hamilton-Jacobi-Bellman equation for problem (5.4), (5.5) has the form 

{V(fi(t)DiSy_l)2Sq)}+g.,j , 1 2 2 St+ min ~ ( t ) ~ f  i(t)Sy,y, = 0 (5.6) 
1)1' 1)2' ' " '  On 

Here S(yl, Y2, . . . ,  Yn, q, t) is the Bellman function. The condition 

1 2 
t =  T" S = ~ Z y  i 

has to be added to this equation. 
A minimum of the expression on the left-hand side of equality (5.6) only exists if Sq < O. On calculating 
this minimum, we obtain 

o , :  

and are therefore write Eq. (5.6) in the form 

yi(t) = z2sintoi(T - t) + toiz~ costoi(T- t) 

q(O)<Q2 o, q(T) = 0 (5.4) 
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S 2 
1 2 y, 1 2 2 

S t +~fi(t)~q-~.~a (t)fi(t)Sy,y ' = 0 

Since the case when  to = 0 is being considered,  af ter  making  the subst i tut ion x = ( T -  t)3/3 the 
preceding  equa t ion  takes  the fo rm 

1 2..A~ S x = IIVSI21S q+ ~al('c) ~ 

H e r e  A is the n-d imens iona l  Lap lace  ope ra to r  and VS = (Syl, Sy 2 . . . . .  Syn). 
We conver t  the equa t ion  when  t = T into the following condit ion when  x = 0 

1 2 
= 0 :  s = 

and we in t roduce the  var iable  

(5.7) 

(5.8) 

, ,t-.~ 2,1/2 
r = ( ~ , Y i )  

The  solution of  Eq. (5.7) with the initial condit ion (5.8) is a function of  the three  variables r, q and x. 
Actually,  on put t ing S = O(r, q, x), we obta in  

2 

t])~ m l~'~rq + ~t~21('C)(t~rr + (n -1 ) r - l t~ r )  

f rom relat ions (5.7) and (5.8). 
I t  follows f rom Asser t ion 2 that  O(r, q, x) is a funct ion of  the two variables:  x and w = r - ~qx,  that  

is, ~ ( r ,  q, x) = F(w, x), and the funct ion F(w, x) is the solution of  the parabol ic  equa t ion  

1 2 
F~ = ~al('c)(Fww + ( n -  1)r-lFw) 

The  op t imal  f eedback  control  in the above p rob l em is de te rmined  using the fo rmula  

f -~aX Ira, r > , ~  

°i = ~ - - ( 0 ,  0 _ r < , , ~  

Hence ,  the c o m p o n e n t s  of  the control  vec tor  V(t) (5.3) are the control  functions ~)i, and the initial 
contro l  funct ions ul, u2, . . . ,  uk are uniquely recovered  using the o r thogona l  t r ans fo rmat ion  A. 

We wish to thank  E L. Che rnous ' ko  for  his interest  and advice and A. Yu. M a m o n o v  for  help in 
carrying out  the  numer ica l  calculat ions of  the op t imal  trajectories.  

R E F E R E N C E S  

1. CHERNOUS'KO, E L., Self-similar solutions of the Bellman equations for problems of the optimal correction of random 
perturbations. PriM. Mat. Mekh., 1971, 35, 2, 333-342. 

2. BENSOUSSAN, A., Perturbation Methods in Optimal Control. John Wiley, Chichester, 1988. 
3. BRATUS', A. S. and CHERNOUS'KO, E L., Numerical solution of problems of optimal correction for random perturbations. 

Zh. Vychisl. Mat. Mat. Fiz., 1974, 14, 68-78. 
4. BORODOVSKII, M. B., BRATUS', A. S. and CHERNOUS'KO, E L., Optimal pulse correction in the case of random 

perturbations. PriM. Mat. Mekh., 1975, 39, 5, 797-805. 
5. BATHER, J. and CHERNOFF, H., Sequential decisions in the control of a space-ship (finite fuel). J. Appl. Probabil., 1967, 

4, 3, 548-604. 
6. OKHOTSIMSKII, D. Ye., RYASIN, V. A. and CHENTSOV, N. N., The optimal strategy for correction. Dokl. Akad. Nauk 

SSSR, 1967, 175, 1, 47-50. 
7. BENSOUSSAN, A. and LIONS, J.-L., NouveUe formulation de probl~mes de contr61e impulsionnel et application. C. r. 

Acad. Sci Paris. Ser. A., 1973, 276, 18, 1189-1192. 
8. BENSOUSSAN, A. and LIONS, J.-L., Contr61e impulsionnel et in~quations qasi-variationnelles d'evolution. C. R. Acad. 

Sci. Paris. Set. A. V., 1973, 276, 20, 1333-1338. 
9. KOLMOGOROV, A. N. and FOMIN, S. V., Introductory RealAnalysis. Prentice-Hall, Englewood Cliffs, N J, 1970. 

10. STRANG, G., Linear Algebra and its Application. Academic Press, New York, 1976. 

Translated by E.L.S. 


